

Journal of Power Sources 64 (1997) 57-60

Role of hydration water in the reduction process of PbO_2 in lead/acid cells

R. Fitas, L. Zerroual *, N. Chelali, B. Djellouli

Laboratoire d'Energétique et d'Electrochimie du Solide, Université de Setif, Setif, 19 000 Algeria

Abstract

The influence of 'hydrogen loss' on the electrochemical properties of both α -PbO₂ and β -PbO₂ was studied using galvanostatic discharge and cyclic voltammetry. The thermal decomposition of electroformed PbO₂ shows two types of hydration water: the first type, which disappears at low temperature, is adsorbed on the surfaces of the PbO₂ particles, and the second one is localized within the PbO₂ crystal structure. The reduction process of PbO₂ in lead/acid cells is mainly determined by diffusion processes within the oxide. The hydrogen diffusion coefficient $\tilde{D}_{\rm H}$ in lead dioxide has been determined at 25 °C; the values obtained are between 0.42 and 1.67 × 10⁻⁷ cm² s⁻¹. The removing of 'structurally bonded' water, by heating the samples at 230 °C, affects considerably the electrochemical properties of PbO₂ and leads to a decrease in $\tilde{D}_{\rm H}$.

Keywords: Lead/acid batteries; Hydration water; Lead dioxide

1. Introduction

The lead/acid battery derives its power from the electrochemical energy released during the conversion of α - and β -PbO₂ to PbSO₄ on the positive plate, and Pb to PbSO₄ on the negative plate.

The major factor contributing to the decline in capacity of the positive plate during charge/discharge cycling was considered to be a progressive decrease in the degree of electrical contact between the PbO_2 particles in the plate and between these particles and the grid. The change in conductivity is mainly due to the combined effects of grid corrosion and a gradual softening of the plate mass and shedding of the PbO_2 particles.

In 1973, Caulder and co-workers [1,2] proposed a socalled 'hydrogen loss' model for positive plate failure. Their results indicated that the decreased activity was associated with the loss of hydrogen species from the PbO₂, accompanied by an increase in its degree of structural order.

This model stimulated a revival of interest in the solidstate chemistry of PbO_2 and considerable research effort has been mobilized in attempts to observe differences in the crystal structure [3–7], hydrogen content [5,7–10], and order/ disorder [4,7,11] of PbO_2 prepared by electrochemical and non-electrochemical routes. These and other studies suggested mechanisms for the inclusion of hydrogen either into the crystal structure of PbO_2 itself [5,9,12] or on the surfaces of PbO_2 particles [7,9,13].

According to the literature, the question of the possible influence of hydrogen and preparation conditions on the electrochemical activity of PbO₂ are still open since many of the studies have provided ambiguous or conflicting data. To cite some of these studies: it is well known that the capacity of α -PbO₂ is lower than that of β -PbO₂ [14–16], however, more recently, Rüetschi [17] showed that α -PbO₂ has a higher inherent capacity than β -PbO₂. Furthermore, recent studies [18] suggested that heat-treatment of PbO₂ results in a decline in capacity of the positive plate material. On the other hand, Hill and Madsen [7] concluded that the decrease in battery capacity with cycling service is not a function of the loss of hydrogen species from the crystal structure of electrochemical active PbO₂.

The present work aims to study the role of hydrogen, present in lattice as H_2O and/or OH groups, in the reduction process of PbO₂ in H_2SO_4 solution, using electrochemical techniques such as cyclic voltammetry and galvanostatic discharge. Differential thermal analysis (DTA) is also used.

2. Experimental

Three categories of plate were tested in this study: (i) fresh α - and β -PbO₂ plates; (ii) α - and β -PbO₂ plates heated at 140 °C for 8 h, and (iii) α - and β -PbO₂ plates heated at

^{*} Corresponding author.

^{0378-7753/97/\$17.00 © 1997} Elsevier Science S.A. All rights reserved *PII* S0378-7753(96)02502-5

230 °C for 8 h. The preparation method of the samples, the chemical and thermal procedures are reported in Ref. [18].

The electrochemical measurements were carried out in a three-electrode cell. The working electrode is at 1 cm distance from a platinum rectangular-shaped counter electrode having an apparent surface area of 5 cm². A Hg/Hg₂SO₄/5 M H₂SO₄ reference electrode was used. All the experiments were carried out at 25 °C. Galvanostatic discharges were performed with current densities of 30 and 40 mA cm⁻² for α - and β -PbO₂, respectively, and the potential-time curves were recorded.

The voltammograms were recorded after cycling the electrodes in the 1.2–0.6 V potential range versus Hg/Hg_2SO_4 at different sweep rates (5–100 mV s⁻¹) and potential–current curves were recorded.

3. Results and discussions

3.1. DTA analysis

The DTA runs were carried out in air at a heating rate of 5 °C min⁻¹. The thermograms of α - and β -PbO₂ are given in Fig. 1(a) and (b). Both α -PbO₂ and β -PbO₂ give a first endothermic peak in the 50–120 °C range corresponding to the departure of physisorbed water. By increasing the temperature, the β -PbO₂ sample showed a shoulder at 150 °C and a shaped peak at 230 °C. In the same temperature range, α -PbO₂ showed two distinct exothermic peaks. These exothermic peaks were associated with the existence of two types of water: the first one, which disappears at low temperature, is adsorbed on the surface of the PbO₂ particles. The second one may be localized in the crystal structure of PbO₂ itself and may be removed after heating at 230 °C.

The results are in agreement with earlier results found by Gavarri et al. [19]. Using neutron quasi-elastic scattering, they confirmed the existence of two types of proton motion: a rotation-like local, and a translational motion.

3.2. Galvanostatic discharge

Galvanostatic discharge curves are shown in Figs. 2 and 3, referring to the first discharge after filling the cell.

Fig. 1. DTA curves of (a) fresh α -PbO₂ and (b) fresh β -PbO₂.

Fig. 2. Potential-time curves for the galvanostatic discharge of: (a) fresh α -PbO₂; (b) α -PbO₂ heated at 140 °C, and (c) α -PbO₂ heated at 230 °C in 5 M H₂SO₄ at a current density of 30 mA cm⁻².

Fig. 3. Potential-time curves for the galvanostatic discharge of: (a) fresh β -PbO₂; (b) β -PbO₂ heated at 140 °C, and (c) β -PbO₂ heated at 230 °C in 5 M H₂SO₄ at a current density of 40 mA cm⁻².

Both α - and β -PbO₂ showed a potential plateau at 0.9 V due to the conversion of PbO₂ to PbSO₄.

After removing structural water by heating the samples at 230 °C, this plateau disappeared completely (see Figs. 2(a) and 3(a)) and an important decrease in potential is observed. This evidences the existence of this plateau at 0.9 V being associated with the presence of hydrogen within the PbO₂ lattice. These hydrogen-combined species play an important role in the reduction mechanism of PbO₂. Their drive-off by heating affects the capacity of PbO₂ considerably.

Adsorbed water on the surface particles has no influence on the kinetic behaviour of β -PbO₂ electrode (Fig. 2(b)). On the other hand, in the case of α -PbO₂ electrode (Fig. 3(b)), this entity changes the behaviour of the electrode. This results in a gradual decrease in potential, and the plateau characteristic of PbO₂ conversion to PbSO₄ tends to disappear progressively.

3.3. Cyclic voltammetry

Voltammograms for α - and β -PbO₂ in 5 M H₂SO₄ at different sweep rates (5–100 mV s⁻¹) are shown in Figs. 4 and 5. In both cases, the shape of the voltammograms changes considerably with the sweep rate. In addition, the

Fig. 4. Cyclic voltammograms of α -PbO₂ in 5 M H₂SO₄ at different sweep rates: (a) 5 mV s⁻¹; (b) 25 mV s⁻¹; (c) 50 mV s⁻¹, and (d) 100 mV s⁻¹.

Fig. 5. Cyclic voltammograms of β -PbO₂ in 5 M H₂SO₄ at different sweep rates: (a) 5 mV s⁻¹; (b) 25 mV s⁻¹; (c) 50 mV s⁻¹, and (d) 100 mV s⁻¹.

cathodic potential peak $E_{\rm pc}$ shifts negatively with increasing sweep rate, ν ; the current at the peak on the voltammogram, $I_{\rm p}$, increases with $\nu^{1/2}$, but is not proportionnal to it.

This behaviour is characteristic of quasi-reversible systems. In such a case and for a solution diffusion controlled process

$$I_{\rm p} = (2.69 \times 10^5) n^{3/2} A D^{1/2} \nu^{1/2} C_0^* K(\Lambda, \alpha) \tag{1}$$

where *n* is the number of electrons, *A* the electrode surface area, C_0^* the bulk concentration of H⁺ ions, *D* the diffusion coefficient and $K(\Lambda,\alpha)$ a constant introduced by Matsuda and Ayabe [20]. This constant depends mainly on the value of the cathodic charge-transfer coefficient, α , and the dimensionless parameter, Λ . From Eq. (1) it is possible to estimate the diffusion coefficient, *D*.

The D versus $K(\Lambda, \alpha)$ curve is given in Figs. 6 and 7 for α - and β -PbO₂, respectively.

One may notice that the diffusion coefficient, D, decreases with increasing $K(\Lambda,\alpha)$. Removing of adsorbed water on surface particles affects the kinetic properties of the electrode and a discrepancy in D is observed. This discrepancy is important when considering the α -PbO₂ electrodes. This indicates that the first type of water plays an essential role in the reduction mechanism of α -PbO₂, whereas, in the case of β -

Fig. 6. Diffusion coefficient $\tilde{D}_{\rm H}$ vs. $K(\Lambda, \alpha)$ obtained for: (a) fresh α -PbO₂; (b) α -PbO₂ heated at 140 °C, and (c) α -PbO₂ heated at 230 °C.

Fig. 7. Diffusion coefficient $\tilde{D}_{\rm H}$ vs. $K(\Lambda, \alpha)$ obtained for: (a) fresh β -PbO₂; (b) β -PbO₂ heated at 140 °C, and (c) β -PbO₂ heated at 230 °C.

 PbO_2 , it has almost no influence and a slight decrease in D is obtained.

In the light of these results one may suppose that this type of water is differently localized within the PbO_2 lattice and that it depends on the crystallographic structure of PbO_2 .

This explains the difference in the shape of the DTA curves recorded of α - and β -PbO₂ illustrated in Fig. 1.

After driving off structural water, the diffusion coefficient is almost independent of the charge-transfer rate. This may be explained by a loss in electrochemical activity of PbO₂, due to the departure of hydrogen by heating the samples at 230 °C. Gavarri et al. [19] attributed to these protons a translation motion with $D_t = 3 \times 10^{-6}$ cm² s⁻¹.

The values of D estimated on the basis of Eq. (1) are of the same magnitude of those found by Münzberg and Pohl [21] for the chemical diffusion coefficient of hydrogen in PbO₂ obtained from the electrochemical method at different pH's and concentrations of Pb²⁺

$$\vec{D}_{\rm H} = (0.4 - 4.9) \times 10^{-7} \,{\rm cm}^2 \,{\rm s}^{-1}$$

One may conclude that the kinetics of PbO_2 reduction is determined mainly by a diffusion process within the oxide.

4. Conclusions

The stoichiometry of lead dioxide is changed by insertion or dissolution of hydrogen during the charge/discharge process. The hydration water, present on the surface particles and localized in the PbO_2 particle, plays an important role in the process.

The kinetics of this process is determined mainly by diffusion of hydrogen within the oxide. The difference in the values of $\tilde{D}_{\rm H}$, calculated for fresh and heat-treated α - and β samples, may be explained by the way and form these hydrogen species are bonded in PbO₂.

Nuclear magnetic resonance and/or nuclear quasi-elastic scattering will be of great help to understand this difference in behaviour of the lead dioxide polymorphs.

References

- [1] S.M. Caulder, J.S. Murday and A.C. Simon, J. Electrochem. Soc., 120 (1973) 1515.
- [2] S.M. Caulder and A.C. Simon, J. Electrochem. Soc., 121 (1974) 1546.
- [3] A.C. Simon and E.L. Jones, J. Electrochem. Soc., 109 (1962) 760.
- [4] R.J. Hill, Mater. Res. Bull., 17 (1982) 769.
- [5] J.D. Jorgensen, R. Varma, F.J. Rotella, G. Cook and N.P. Yao, J. Electrochem. Soc., 129 (1982) 1678.

- [6] A. Santoro, P. D'Antonio and S.M. Caulder, J. Electrochem. Soc., 130, 7 (1983) 1451.
- [7] R.J. Hill and I.C. Madsen, J. Electrochem. Soc., 131, 7 (1984) 1486.
- [8] P. Faber, Electrochim. Acta, 26 (1981) 1435.
- [9] P.T. Moseley, J.L. Hutchison, C.J. Wright, M.A.M. Bourke, R.I. Hill and V.S. Rainey, J. Electrochem. Soc., 130 (1983) 829.
- [10] P.T. Moseley and N.J. Bridger, J. Electrochem. Soc., 131 (1984) 608.
- [11] P.T. Moseley, J.L. Hutchison and M.A.M. Bourke, J. Electrochem. Soc., 129 (1982) 876.
- [12] P. Boher, P. Garnier and J.R. Gavarri, J. Solid State Chem., 52 (1984) 146.
- [13] R.J. Hill and M.R. Houchin, Electrochim. Acta, 30 (1985) 559.
- [14] J. Burbank, J. Electrochem. Soc., 104 (1957) 693.
- [15] E. Voss and J. Freundlich, in D.H. Collins (ed.), *Batteries*, Pergamon Press, Oxford, 1963, p. 73.
- [16] P. Rüetschi, J. Sklarchuk and R.T. Angstadt, in D.H. Collins (ed.), Batteries, Pergamon Press, Oxford, 1963, p. 89.
- [17] P. Rüetschi, J. Electrochem. Soc., 139 (1992) 1347.
- [18] R. Fitas, L. Zerroual, N. Chelali and B. Djellouli, submitted for publication.
- [19] J.R. Gavarri, P. Garnier, P. Boher, A.J. Dianoux, G. Chedeville and B. Jacq, J. Solid State Chem., 75 (1988) 251.
- [20] H. Matsuda and Y. Ayabe, Z. Elektrochem., 59 (1955) 494.
- [21] R. Münzberg and J.P. Pohl, J. Electrochem. Soc., 122 (1975) 1640.